
1 Cohomology (on Sheaves)

For subsections 1.1 and 1.2 let K,K ′ and K ′′ be abelian categories. Furthermore let ”Iff” be an
abreviation of ”If and only if”.

1.1 Injective Objects

Lemma 1.1.1 (Exactness of Hom(−, E)). The Functor Hom(−, E) is left exact, that is, if 0 →
A→ B → C → 0 ist exact in K, then the derived sequence

0→ Hom(A,E)→ Hom(B,E)→ Hom(C,E)

is exact in the Category of abelian groups.

Furthermore is Hom(−, E) exact, if and only if E fullfills the following equivalent properties:

(i) For all monomorphisms A ↪→ B and morphisms A
f→ E, there exists an extension of f to a

morphism B → E, such that the following triangle commutes:

A B

E

f

(ii) Every short exact sequence 0→ E → A→ B → 0 splits, meaning it is isomorphic to

0→ E
ι1→ E ⊕B π2→ B → 0.

Definition 1.1.2 (Injective Objects). Iff E ∈ Ob(K) is such that Hom(−, E) is exact, we call E
an injective object (of K). Furthermore we say that K has enough injectives, iff for all A ∈ Ob(K)
there is an injective E and a monomorphism A ↪→ E.

Lemma 1.1.3 (Injective products and divisble groups).

(i) Let Ei ∈ Ob(K), then the product
∏

i∈I Ei is injective, if and only if Ei is injective for all
i ∈ I.

(ii) An abelian group G is injective (in Abgp), if and only if G is divisible, meaning that for all
g ∈ G and n ∈ Z× there exists an h ∈ G with nh = g.

Remark 1.1.4. The proof of Lemma 1.1.3 (ii) uses Zorn’s Lemma, which itself is equivalent to the
axiom of choice.

Lemma 1.1.5.

(i) For F ∈ R−Mod, G ∈ Abgp there exists a natural isomorphism of abelian groups

HomR(F,HomZ(R,G))
∼=−→ HomZ(F,G).
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(ii) If G is an injective abelian group, then HomZ(R,G) is an injective R-Module.

(iii) Suppose E is an injective R-module, such that for any R-module F we have:

∀f ∈ F, f ̸= 0⇒ ∃ϕ ∈ HomR(F,G) such that ϕ(f) ̸= 0, (1)

then any R-module can be embedded in an injective (namely a product of copies of E).

Proof.

(i) One can easily check this statement using the morphisms

HomR(F,HomZ(R,G))→ HomZ(F,G) HomZ(F,G)→ HomR(F,HomZ(R,G))

ϕ 7→ (f 7→ ϕ(f)(1)) ψ 7→ (f 7→ (r 7→ ψ(rf)))

(ii) Using statement (i) for E = HomZ(R,G) we obtain a natural isomorphism HomR(−, E) ∼=
HomZ(−, G), where the right side is exact, since G is injective in Abgp.

(iii) Consider the map

Φ: F →
∏

ϕ∈HomR(F,E)

E

f 7→ (ϕ(f))ϕ∈HomR(F,E).

The right side is injective by Lemma 1.1.3 (i) and the R-module morphism Φ is monomorphic
iff its kernel is zero. In other words: Φ is monomorphic iff for all f ∈ F we get f ̸= 0⇒ f ̸∈
ker(Φ).

Remark 1.1.6. Statement (i) is a special case of HomR(−,HomS(−,−)) ∼= HomS(−⊗R −,−).

Theorem 1.1.7. The category R−Mod has enough injectives for any Ring R.

Proof. Use Lemma 1.5 (iii) to show the statement:

Consider the R-module E = HomZ(R,Q/Z), then by Lemma 1.1.3 (ii) (G injective iff divisible)
and Lemma 1.1.5 (ii) (HomZ(R,G) injective if G injective/divisble) E is injective.

We now want to check statement (1). So let 0 ̸= f ∈ F ∈ Ob(R−Mod). There exists a non-zero
Z-modulemorphism Z · f → Q/Z (using f 7→ 1/2 + Z if f has infinite order or f 7→ 1/n + Z if f
has finite order n). Because Q/Z is injective, this extends to a Z-module morphism ψ : F → Q/Z,
such that ψ(f) ̸= 0 (Lemma 1.1.1 (i)). Now Lemma 1.1.5 (i) gives corresponding ϕ ∈ HomR(F,E)
with ϕ(f) ̸= 0. Hence Lemma 1.1.5 (iii) applies.
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1.2 Derived functors

Definition 1.2.1 (Complexes and morphisms). A complex (right-cocomplex) L• in K is a family
(Ln, dn : L

n → Ln+1)n∈N of objects and morphisms, such that for all n ∈ N we have dn+1 ◦ dn = 0:

L0 L1 . . . Ln Ln+1 Ln+2 . . .
d0 d1 di−1 dn

0

dn+1◦dn

dn+1 dn+2

The n-th cohomology of the complex L• is defined as

Hn(L•) := ker(dn)/im(dn−1)

for all n ∈ N, with L−1 := 0. The set H∗(L•) := {Hn(L•) | n ∈ N} is called cohomology of L•.
Furthermore we call the complex L• exact (or acyclic) iff for all n ∈ N \ {0} we have Hn(L•) = 0,
that is, iff

0→ H0(L•)→ L0 → L1 → . . .

is exact. Let A ∈ Ob(K), then a complex over A is a complex L• with H0(L•) ∼= A, and if L• is
exact, it is called a resolution of A. If furthermore Ln is injective for all n ∈ N, we say that L• is
an injective resolution of A.

Additionally we define a morphism of complexes g : L• → M• to be a family of K-morphisms
gn : L

n →Mn for each n ∈ N, such that the diagramm

Ln Ln+1

Mn Mn+1

dn

gn gn+1

d′n

commutes. Lastly we define two morphisms g, h : L• → M• to be (chain) homotopic (Notation:
g ≃ h), iff there are K-morphisms kn : L

n+1 → Mn for all n ∈ N, such that d′n−1kn−1 + kndn =
gn − hn

Ln Ln+1

Mn−1 Mn

dn

kn−1
hg

kn
d′n−1

Note that g and h are already homotopic, if the diagramms

Ln Ln Ln+1

Mn−1 Mn Mn

kn−1
g

dn

h
kn

d′n−1
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both commute. However this is not a necessary condition.

Lemma 1.2.2. A morphism of complexes g : L• →M• induces morphisms of cohomology H(g) =
g∗ : H∗(L•)→ H∗(M•) in a functorial way.

Lemma 1.2.3. If L• (resp. M•) is an injective resolution of A (resp. B), then any morphism
f : A → B can be lifted to a morphism g : L• → M•, meaning that f = g∗ : H0(L•) → H0(M•).
This morphism is unique up to isomorphism.

Corollary 1.2.4. If K has enough injectives, then every object A ∈ Ob(K) has an injective
resolution and any two injective resolutions L• and M• of A are homotopy equivalent. That is,
there are morphisms g : L• →M• and h : M• → L•, such that g ◦ h ≃ idM and h ◦ g ≃ idL.

Definition 1.2.5 (Right derived functors). Let F : K → K ′ be a left exact functor, where K,K ′

are abelian categories andK has enough injectives. Given A ∈ Ob(K), let L• be an injective resoul-
tion of A, and let (RnF )(A) = Hn(FK•) be the cohomology of the complex (F (Kn), F (dn))n∈N,
then RnF : K → K ′ are called right derived functors of F .

In order to define RnF on a map f : A→ B in K, lift f to a morphism of complexes g : L• →M•,
where L•,M• are injective resoltions of A and B respectively and obtain a map

Rnf : RnF (A) = Hn(FL•)
F (g)∗−→ Hn(FM•) = RnF (B).

Lemma 1.2.6.

(a) The RnF are well defined, meaning that they are independent of the choices of injective
resolutions and of maps between them.

(b) The Functor R0F is naturally isomorphic to F .

(c) If A is injective we get RnF (A) = 0 for all n > 0.

Definition 1.2.7 (∂-functor). Let a ∈ N ∪ {∞}. A ∂-functor T • : K → K ′ is a sequence of
functors {T n : K → K ′; 0 ≤ n < a} together with an assignment to each short exact sequence

0→ A→ B → C → 0

in K of a collection of morphisms ∂ = ∂T : T
n−1C → T nA (0 < n < a), such that

(i) If

0 A B C 0

0 A′ B′ C ′ 0

commutes in K and has exact rows, then the corresponding diagrams
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T n−1C T nA

T n−1C ′ T nA′

∂

Tn−1g Tnf

∂

commute, meaning ∂ is natural.

(ii) If 0→ A→ B → C → 0 is exact, the asociated sequence

0→ T 0A→ T 0B → T 0C
∂−→ T 1A→ T 1B → T 1C

∂−→ · · · → T n−1C
∂−→ T nA→ . . .

for n < a is a complex. The ∂-functor is called exact iff for any sequence the corresponding
sequence is always exact.

A morphism of ∂-functors (with the same a) S• → T • is given by a sequence of natural transfor-
mations {Sn → T n | 0 ≤ n < a}, such that for any short exact sequence 0 → A → B → C → 0
the diagrams

Sn−1C SnA

T n−1C T nA

∂S

∂T

commute.

If F : K → K ′ is a functor, a ∂-functor over F is a ∂-functor {T n, ∂T} together with a natural
isomorphism F

∼−→ T 0, hence if T is exact, F is left exact.

Lemma 1.2.8. If F : K → K ′ is a left-exact functor between abelian categories and 0 → A →
B → C → 0 is a split exact sequence in K, then

0→ FA→ FB → FC → 0

is also split exact (hence F (A⊕ C) ∼= FA⊕ FC)).

Proof. The sequence 0 → A
f→ B

g→ C → 0 is exact iff A → B → C is exact and there exists a

diagramm A
f ′
← B

g′← C, such that f ′ ◦ f = idA and g ◦ g′ = idC . Applying the functor F to all of
these objects and morphisms does not change these properties.

Lemma 1.2.9. Suppose L• → M• → N• are morphisms of complexes in an abelian category K,
such that for all n ∈ N the sequence

0→ Ln →Mn → Nn → 0

is exact (we call this a short exact sequence of complexes), then there is a collection of morphisms
∂ : Hn(N•)→ Hn+1(L•) for all n, such that the sequence

0→ H0(L)• → H0(M•)→ H0(N•)
∂−→ H1(L•)→ . . .
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is exact. Moreover ∂ is natural in the sense, that if

0 L• M• N• 0

0 L•
1 M•

1 N•
1 0

is a commutative diagram of morphisms of complexes, with exact rows, then the induced morphism
between the long exact sequences is a morphism of complexes, that is for all n ∈ N the diagram

Hn(N•) Hn+1(L•)

Hn(N•
1 ) Hn+1(L•

1)

∂

∂1

commutes (where ∂1 is constructed from the lower exact row).

Theorem 1.2.10. If F : K → K ′ is a left-exact functor between abelian categories, where K has
enough injectives, then the sequence of functors R•F = {RnF | n ∈ N} forms an exact ∂-functor
over F .

Proof. We need to show that there is a natural assignment to each short exact sequence 0→ A→
B → C → 0 in K of a long exact sequence

0→ FA→ FB → FC −→ R1FA→ · · · → Rn−1FC −→ RnFA→ RnFB → RnFC → . . . (2)

Let L• (resp. N•) be an injective resolution of A (resp. C). We first construct a complex of
injective objects M• over B and a short exact sequence of complexes 0 → L• → M• → N• → 0.
Assume this has been done up to the situation in the diagram

0 Ln−1 Mn−1 Nn−1 0

0 Ln Mn Nn 0

for n ∈ N (with convention L−1 = A,M−1 = B,N−1 = C), then we can construct the diagramm

0 Ln−1 Mn−1 Nn−1 0

0 Ln Mn Nn 0

cok(f) cok(g) cok(h)

0 Ln+1 Mn+1 := Ln+1 ⊕Nn+1 Nn+1 0,

f g h

α

f ′

β

h′

h
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where f ′, h′ arise from UVP of cokernels. One can show that the third row is exact ([Mac1]
VIII par. 4). Mn+1 is injective because of Lemma 1.1.3 (prod. of injective objects). Define
g′ : cok(g)→Mn+1 by

cok(g)

Mn+1 = Ln+1 ⊕Nn+1

Ln+1 Nn+1

g′f ′′ h′◦β

π1 π2

with f ′′ being an extension of f ′ to cok(g) as in Lemma 1.1.1 (i), since Ln+1 is injective, and α is
monomorphic. One can show that M• is a complex, and that 0→ L• →M• → N• → 0 is a short
exact sequence.

The sequence (2) collapses (since L• and N• are exact) into a collection of exact pieces 0 →
Hn(M•) → 0 for n ∈ N, which shows that Hn(M•) = 0 for all n ≥ 1. Hence M• is exact and
therefore an injective resolution of B. Therefore one may use M• to compute RnF (B).

Since the short exact sequences 0 → Ln → Mn → Nn → 0 is split exact by Lemma 1.2.8 (left-
exact functor keeps split exactness) the sequence 0 → FL• → FM• → FN• → 0 is exact and so
Lemma 1.2.9 yields

· · · → Hn(FL•)→ Hn(FM•)→ Hn(FN•) −→ Hn+1(FL•)→ . . .

which is the required sequence by Definition 1.2.5 and Lemma 1.2.6. The naturality of ∂ follows
from Lemma 1.2.9.

Theorem 1.2.11. Let F : K → K ′ be a left exact functor between abelian categories, where K
has enough injectives. Then the ∂-functor R•F has the following universal property. Suppose that
{Gn | 0 ≤ n < a} is a ∂-functor over F , then there is a unique morphism of ∂-functors

{RnF | 0 ≤ n < a} → {Gn | 0 ≤ n < a}

such that the triangle

R0F G0

F

commutes. If furthermore G• is exact and effaceable (meaning for any injective object E of K, we
have GnE = 0 for all 0 < n < a), then the morphism R → G• is an isomorphism of ∂-functors
over F .

7



Proof. For an object A of K we construct the morphisms RnFA → GnA by induction on n. For
n = 0 we compose the isomorphisms which show that R•F and G• are ∂-functors over F . Embed
A in an injective object E of K to obtain a short exact sequence

0→ A→ E → B → 0.

Hyptohesis, Lemma 1.2.6, and the long sequences of this exact sequence, give us a diagram

0 Rn−1FB RnFA 0

Gn−1E Gn−1B GnA GnE

f

g

h

with an exact top row. Hence f is an isomorphism, and so there is a unique map g making the
diagram commute. This is independent of E and defines a morphism of ∂-functors. If G• is exact
and effaceable, the same diagram shows, by induction on n, that g is an isomorphism (since h
is).

Corollary 1.2.12. Let K
F→ K ′ G→ K ′′ be functors between abelian categories, where K and K ′

each has enough injectives. Suppose that

(i) G is left-exact and

(ii) F is exact and transforms injectives in K into G-acyclic objects (meaning for all injective E
in K we get RnG(FE) = 0 for all n > 0,

then there is a natural isomorphism of ∂-functors

R•(G ◦ F ) ∼= (R•G) ◦ F.

The same holds, if instead F is left-exact and G is exact.
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